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Abstract

In this paper, the structural power flow characteristics of cracked Timoshenko beams are presented. The case of an

infinite Timoshenko beam with an open crack is considered. The crack in the Timoshenko beam structure is modeled as a

rotational spring with a constant flexibility which is deduced from the relationship between the strain energy and stress

intensity factor in fracture mechanics. The flexural wave motions of perfect Timoshenko beam and cracked Timoshenko

beam are investigated, then the input power flow and transmitted power flow of perfect and cracked beams are calculated.

The results show that the vibrational power flow of cracked beam is highly related to the location and depth of the crack.

Contours of input power flow with different frequencies are constructed to identify the location and depth of the crack.

This method is very promising for the detection and location of structural damage in the future work.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Due to different causes, cracks are always found in the element of a structure. In order to improve the safety
and reliability of the structure, it is urgent to make early detection and locating of the cracks. For this reason
many damage-detection methods are developed. Non-destructive evaluation methods, such as ultrasonic
testing, X-ray, magnetic field methods, etc., are usually costly and time consuming for the large-scale
structure. The modal-based damage identification methods are utilized widely in recent years. The basic idea is
that the existence of a crack in a structure results in a reduction of stiffness which in turn produces a decrease
in natural frequencies and changes in the modal parameters (mode shapes, modal damping, etc.). Therefore,
changes in the physical properties of a structure will cause detectable changes in the modal properties. Though
this method may have advantages, it possess a number of major disadvantages [1].

In the previous studies, many authors have developed different methods to detect the crack in the beam
structure. Gounaris and Dimarogonas [2] have developed a finite element for a cracked prismatic beam for
structural analysis based on the compliance matrix for the crack. Rizos et al. [3] considered the crack in beam
as a local flexibility and developed a crack detective method by the measured vibration modes to determine the
crack location and depth. Lele and Maiti [4] detected the location of crack in short beams based on frequency
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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measurements, taking into account the effects of shear deformation and rotational inertia and representing the
crack by a rotational spring. Krawczuk et al. [5] introduced a finite spectral element of a cracked Timoshenko
beam for modal and elastic wave propagation analysis. In Ref. [6], a method of crack detection in beam is
provided by wavelet analysis of transient flexural wave, and the transient flexural wave propagation was
calculated by the reverberation matrix method.

In recent years, the structure-borne sound analysis and control of flexible structures and cabins of marine-
structures and aeronautical crafts are becoming an important topic. The use of vibrational power flow in a
problem of this type is very valuable. An attempt to decrease the radiation or vibration in a structure by
reducing only the force or velocity amplitude and not considering the relative phase angle may not necessarily
be successful, but an improvement may be ensured by decreasing the net vibrational power applied to a
structure. The premise of the effort proposed here is that damage to a structure will correspond in some way to
changes, though small, in the structure’s damping and stiffness properties and so the vibrational power flow is
influenced by the changes of propagating waves. Li et al. [7–9] has researched the relations of the vibrational
power flow, the position and the characteristic size of the damage in Euler beam structure and the circular
plate structure.

The aim of this paper is to investigate the power flow characteristics of the Timoshenko beam with an open
crack. By considering the crack as a rotational spring, the wave solutions of the perfect Timoshenko beam and
cracked Timoshenko are deduced. The comparison of perfect beam’s power flow and cracked beam’s power
flow characteristics are performed. The relation between the power flow characteristics of the cracked
Timoshenko beam and the crack’s characteristics are discussed in detail.
2. Flexural vibration of Timoshenko beam

By applying Hamilton’s principle, the coupled differential equations for transverse vibration of a uniform
Timoshenko beam with constant cross-section are given by [10]:

rAs €y� GkAsðy
00 � f0Þ ¼ f ðx; tÞ, (1)

rI €f� EIf00 � GkAsðy
0 � fÞ ¼ 0, (2)

where a dot indicates partial differentiation with respect to time, and a prime indicates partial differentiation
with respect to x. y is the transverse deflection of the center line of the beam, f the slope of the deflection curve
due to bending deformation, r the mass density, As the area of the cross-section, E the modulus of elasticity, I

the moment of inertia, G the shear modulus, k the Timoshenko beam shear coefficient, which is a function of
the Poisson ratio n and the shape of the cross-section [11].

By eliminating f form Eqs. (1) and (2) one can get the equation about the transverse displacement y. So the
Timoshenko beam equation of free vibration can be written as:

EIyiv þ rAs €y� rIð1þ E=kGÞ €y00 þ ðr2I=kGÞ y
::::
¼ 0, (3)

EIfiv
þ rAs

€f� rIð1þ E=kGÞ €f00 þ ðr2I=kGÞf
::::
¼ 0. (4)

For harmonic motion, y and f can be written as

yðx; tÞ ¼ Y ðxÞeiot, (5)

fðx; tÞ ¼ FðxÞeiot, (6)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, o is the angular frequency. Substituting Eq. (5) into Eq. (3), one can get

Y iv þ ðmþ nÞY 00 þ ðmn� pÞY ¼ 0, (7)

where m ¼ ro2/E, n ¼ ro2/kG, p ¼ rAso
2/EI.



ARTICLE IN PRESS
X. Zhu et al. / Journal of Sound and Vibration 297 (2006) 215–226 217
Define two wavenumbers

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� n

2

� �2
þ p

r
�

mþ n

2

s
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� n

2

� �2
þ p

r
þ

mþ n

2

s
, (8)

the general solution of Eq. (7) is of the form:

Y ðxÞ ¼ Aek1x þ Be�k1x þ Ceik2x þDe�ik2x. (9)

Similarly, for the slope of the deflection curve, one can easily derive that:

FðxÞ ¼ Aq1e
k1x � Bq1e

�k1x � iCq2e
ik2x þ iDq2e

�ik2x, (10)

where q1 ¼ ðk
2
3 þ k2

1Þ=k1, q2 ¼ ðk
2
3 � k2

2Þ=k2, k3 ¼
ffiffiffi
n
p

, the constant coefficients A,B,C,D can be determined by
the boundary conditions of the Timoshenko beam.

From Eq. (8), it can be seen that k2 is always real and positive, while k1 may be real, zero or imaginary,
depending on the value of o. This leads to the appearance of two spectra in the frequency domain. When
k1 ¼ 0, there exists a critical frequency oc, which can be written as

oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kGAs

rI

s
¼

1

r

ffiffiffiffiffiffiffi
kG

r

s
, (11)

where r is the radius of gyration.
By substituting Eq. (11) into Eq. (8), the critical wavenumbers are

k1c ¼ 0; k2c ¼
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kG

E
þ 1

r
.

If oooc, k1 is real. It can be seen from Eqs. (9) and (10) that one imaginary pair and two real and
symmetric wave components occur. The solution leads to two pair of propagating and evanescent waves.

If o4oc, k1 is imaginary. The solutions are two pairs of waves, propagating at two different speeds.
In this paper, the concerned frequencies are limited within the first spectrum of frequencies. So oooc and

k1 is real.
The bending moment M and shear force Q transmitted through an arbitrary section of the beam are,

respectively,

MðxÞ ¼ EIF0; QðxÞ ¼ GAskðY
0 � FÞ. (12)

Considering an infinite Timoshenko beam where the positive wave motion along x direction, one can get
A ¼ C ¼ 0, the solution of the beam can be simplified as

Y ðxÞ ¼ Be�k1x þDe�ik2x; FðxÞ ¼ �Bq1e
�k1x þ iDq2e

�ik2x.

If a concentrated harmonic force F ¼ F0e
iot is applied at the position of x ¼ 0, the boundary conditions are

at x ¼ 0 : FðxÞ ¼ 0; QðxÞ ¼ F 0=2. (13)

By substituting the expressions of Y(x) and F(x) into the boundary conditions, one can get:

�Bq1 þ iDq2 ¼ 0;

ð�k1 þ q1ÞBþ ð�ik2 � iq2ÞD ¼
F0

2GkAs

. (14)

The values of B and D can be deduced from the above equations:

B ¼
�F0

2GkAs

q2

k1q2 þ k2q1

; D ¼
iF 0

2GkAs

q1

k1q2 þ k2q1

. (15)

So the positive wave solutions of a perfect infinite Timoshenko beam are deduced.
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3. Analysis of the cracked beam

An infinite Timoshenko beam with uniform circular cross-section is considered as shown in Fig. 1. The
beam has a diameter D ¼ 2R and a transverse surface crack of depth a, which is located at distant c from the
position of x ¼ 0. This research assumes the crack is on surface and remains open to avoid nonlinear
problems. Because bending moment is dominant in the beam, all other coupling terms may be neglected, only
the bending flexibility is considered here [2], as can be seen from Fig. 2. For structural mass, the effects of
damage are usually very small and often can be neglected. Thus the crack is represented by a rotational spring.
Because the concentrated harmonic force F ¼ F0e

iot is applied at the position of x ¼ 0, the cracked beam can
be divided into three segments: the semi-infinite region of xp0, the finite part of 0pxpc, the semi-infinite
region of xXc, and the last two parts are connected by the rotational spring.

The local flexibility of the crack for bending moment in the x direction is obtained as [12]:

C0 ¼
q2

qM2

Z b

�b

Z Z

0

ð1� n2ÞK2
1

E
dZdx, (16)

where the stress factor intensity

KI ¼ ð4M=pR4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

q ffiffiffiffiffiffi
pZ
p

F 2ðZ=hÞ.

So

C0 ¼
1� n2

E

Z b

�b

Z Z

0

32

p2R8
ðR2 � x2ÞpZF2

2ðZ=hÞdZdx. (17)

The geometric function F2(Z/h) is [13]:

F2ðZ=hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

pZ
tan

pZ
2h

� �s
0:923þ 0:199ð1� sin ðpZ=2hÞÞ4

cos ðpZ=2hÞ
, (18)

h being the local height, h ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
. The accuracy of this geometric function is better than 0.5% for any

Z/h [13].
The solutions of the three regions can be written, respectively as,

Y 1ðxÞ ¼ A1e
k1x þ B1e

�k1x þ C1e
ik2x þD1e

�ik2x;

F1ðxÞ ¼ A1q1e
k1x � B1q1e

�k1x � iC1q2e
ik2x þ iD1q2e

�ik2x;
xp0, (19)
y

F

x

F 

Ds

y
x

c 

Ds

a 

(a) (b)

Fig. 1. (a) Infinite perfect beam, (b) infinite cracked beam.

Fig. 2. (a) Model of cracked beam, (b) cross section of the crack.
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Y 2ðxÞ ¼ A2e
k1x þ B2e

�k1x þ C2e
ik2x þD2e

�ik2x;

F2ðxÞ ¼ A2q1e
k1x � B2q1e

�k1x � iC2q2e
ik2x þ iD2q2e

�ik2x;
0pxpc, (20)

Y 3ðxÞ ¼ A3e
k1ðx�cÞ þ B3e

�k1ðx�cÞ þ C3e
ik2ðx�cÞ þD3e

�ik2ðx�cÞ;

F3ðxÞ ¼ A3q1e
k1ðx�cÞ � B3q1e

�k1ðx�cÞ � iC3q2e
ik2ðx�cÞ þ iD3q2e

�ik2ðx�cÞ;
xXc. (21)

For the semi-infinite region of xp0, only negative wave exists and reflected wave vanishes, so B1 ¼ 0,
D1 ¼ 0. Similarly, for the semi-infinite region of xXc, only positive wave exists and reflected wave vanishes,
A3 ¼ 0, C3 ¼ 0. Thus there are eight unknown coefficients in the above equations.

There are continuous conditions at x ¼ 0:

Y 1 ¼ Y 2; F1 ¼ F2; M1 ¼M2; �Q1 þQ2 ¼ F 0. (22)

At x ¼ c, conditions can be introduced which impose continuity of displacement, bending moment and
shear force at the crack location:

Y 2 ¼ Y 3; M2 ¼M3; Q2 ¼ Q3. (23)

The crack is supposed to give rise to a jump in slope [3]. The transition can be written in the following form:

F2 þ C0EIF02 ¼ F3. (24)

Substitution of the expressions of Y jðxÞ;FjðxÞ (j ¼ 1, 2, 3) into the above eight equations yields the
characteristic equations:

1 1 �1 �1 �1 �1 0 0

q1 �iq2 �q1 q1 iq2 �iq2 0 0

t1 t2 �t1 �t1 �t2 �t2 0 0

t3 �it4 �t3 t3 it4 �it4 0 0

0 0 et5 e�t5 eit6 e�it6 �1 �1

0 0 t1e
t5 t1e

�t5 t2e
it6 t2e

�it6 �t1 �t2

0 0 �t3e
t5 t3e

�t5 it4eit6 �it4e
�it6 �t3 it4

0 0 ðt7 þ q1Þe
t5 ðt7 � q1Þe

�t5 ðt8 � iq2Þe
it6 ðt8 þ iq2Þe

�it6 q1 �iq2

2
666666666666664

3
777777777777775

A1

C1

A2

B2

C2

D2

B3

D3

2
666666666666664

3
777777777777775

¼

0

0

0
F0

GAsk

0

0

0

0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

,

where t1 ¼ q1k1, t2 ¼ q2k2, t3 ¼ �k1+q1, t4 ¼ k2+q2, t5 ¼ k1c, t6 ¼ k2c, t7 ¼ �k1C
0EI, t8 ¼ q2k2C

0EI.
So the expressions of Aj, Bj, Cj, Dj (j ¼ 1, 2, 3) can be derived from the characteristic equations.

4. Flexural power flow in Timoshenko beam

When the beam structures vibrate in the state of single frequency, the structural power flow input by the
external force propagates to far field continuously. The time-averaged power flow by the point force is [14]

Pin ¼
1

2
Reð�ioF0YnÞ ¼

1

2
F0j j

2 ReðM̄Þ ¼
1

2
Y 0j j

2 ReðZ̄Þ, (25)

where Re(*) expresses the real part of a complex value, an asterisk denotes the complex conjugate, M̄; Z̄, are
the force point mobility and impedance, respectively.

Substituting the expression of Y into the above equation, the input power flow of the perfect Timoshenko
beam is

Pin ¼
1

2
F0oRe �iðBe�k1x þDe�ik2xÞ

n
� �

¼
1

2
F0oRe �iðBe�k1xÞ

n
� �

þ
1

2
F 0oRe �iðDe�ik2xÞ

n
� �

.
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When oooc, k1 and k2 are both real, q1 and q2 are real as well. So B is real, D is purely imaginary.
Considering x ¼ 0, the input power flow can be written as

Pin ¼
1

2
F 0oRe �iDn

� �
¼

1

2
F 0oRe �i

�iF0

2GkAs

q1

k1q2 þ k2q1

� �
¼

1

4

F 2
0o

GkAs

q1

k1q2 þ k2q1

.

Substituting the expressions of q1; q2 into the above equation, we can get

Pin ¼
F 2

0

4roAs

k2ðk
2
1 þ k2

3Þ

k2
1 þ k2

2

. (26)

Similarly, the input power flow of cracked Timoshenko beam can also be calculated.
The transmitted power flow along a beam has two terms: the bending moment times the angular velocity

and the shear force times the velocity. For harmonic analysis, the force and the velocity are described as
complex quantities and as functions of frequency. The flexural velocity and angular velocity are, respectively,

_yðx; tÞ ¼ ioY ðxÞ; _fðx; tÞ ¼ ioFðxÞ.

The transmitted power flow at any point along a Timoshenko beam is then given by

Ptr ¼
1

2
Reð�ioMFnÞ þ

1

2
Reð�ioQY nÞ. (27)

Because the shear force can also be written as

QðxÞ ¼ GkAsðY
0 � FÞ ¼ �EIF00 þ rI €F,

the transmitted power flow can be expressed as following form:

Ptr ¼
1

2
Re �ioðEIF0ÞFn � ioð�EIF00 � o2rIFÞYnÞ
� �

. (28)

Based on above analysis, the input power flow and transmitted power flow of the cracked Timoshenko
beam are functions of position and the characteristic size of the crack. The input power flow and the
transmitted power flow in the cracked beam can be easily measured in practical engineering. The power flow
input into the beam can be directly measured with an impedance head [14]. The bending wave power flow
carried by internal forces Q(x) and M(x) in far field can be measured using a two-accelerometer array or
alternatively using a biaxial accelerometer [15,16]. However, the measurement of power flow in Refs. [15,16] is
based on Euler beam theory. In Ref. [17], for the measurement of bending wave power flow in one-
dimensional structures, the error caused by the omission of shear force and rotating inertia error at high
frequencies was analyzed. In addition, the modified measurement formulas based on Timoshenko beam theory
were given. In this way the bending wave power flow in the cracked Timoshenko beam can be measured as
well by using a two-accelerometer array. So the crack may be diagnosed by comparing the vibrational power
flow of the cracked Timoshenko beam with that of the perfect Timoshenko beam.

5. Numerical results and discussions

In this paper, an undamped infinite steel beam with R ¼ 2.5 cm, modulus of elasticity E ¼ 200GPa,

Poisson’s ratio n ¼ 0.3 and mass density r ¼ 7800 kg/m3 is considered. The critical frequency f c ¼ oc=2p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGAs=4p2rI

p
¼ 3:76� 104 Hz, which is very high. There is only a crack on its surface, if the crack depth is a,

the crack width b is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðR� aÞ2

q
. For cracked beam structure, the crack is situated at different positions c

and the crack depth a is a variable as well.
Fig. 3 (a) and (b) show how the input power flows of perfect and cracked Timoshenko beam vary over the

frequency range when changing the relative crack depth a/D and the relative location C/D, respectively. The
coordinate of X-axis is f(Hz), and the coordinate of Y-axis is log10ðPin=F 2

0Þ ðdBÞ. The frequency range is from 1 to
2000Hz. From Fig. 3 it can be seen that both the input power flow of perfect beam and that of cracked beam
decrease with the increase of the frequency. The input power flow of cracked Timoshenko beam fluctuates around
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Fig. 3. Input power flow level of cracked beam. (a) a/D ¼ 0.4, (b) c/D ¼ 10.
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that of the pefect beam and the amplitude of fluctuation increases when the frequency increases. It can be seen
from Fig. 3(a) that the input power flow curve fluctuates more and more quickly over the same frequency range
with increasing distance between the acting point and the cracked point. In Fig. 3(b), the degree of fluctuation
increases over the same frequency range when the relative depth of the crack changes from 0.2 to 0.5.

In Fig. 4, the coordinate of X-axis is the relative location c/D. When only changing crack depth and keeping
driving frequency constant, the shape of the input power flow curves is almost sinusoidal, though a/D is
different. The input power flow of the cracked beam fluctuates around that of the perfect beam. The
wavelength of different curves is identical, but the amplitude increases with increasing the depth of crack. It
can be seen from Fig. 4(b) that the wavelength of input power flow curve is shorter with increasing driving
frequency when the depth of the crack keeps constant. Moreover, the input power flow level decreases when
the driving frequency increases.

Besides the input power flow of Timoshenko beam, the transmitted power flows of perfect and cracked
Timoshenko beam are also considered. The calculated results reveal that for perfect beam the transmitted
power flows along positive direction xX0 and along negative direction xp0 keep constant and equivalent
under the same frequency except the near-field regions near acting point. The transmitted power flow along
one direction is half of the input power flow under the same driving frequency. For cracked Timoshenko
beam, when the driving frequency is fixed, the transmitted power flows along the two directions also keep
constant except the near-field regions near acting point and cracked point, but the two constants are different.
As damping is not considered, the transmitted power flows do not change along the propagating direction in
the far-field regions.

The ratio of transmitted power flow along positive direction to the input power flow of cracked beam
(defined by Ptr/Pin) is shown in Figs. 5(a) and (b) when changing c/D and changing a/D, respectively. The
straight line is the transmitted power flow ratio curve of the perfect beam, which denotes the input power flow
is divided two equal parts propagating along positive and negative directions, respectively. For the cracked
beam, the ratios of the transmitted power flows along both sides of the acting point to the input power flow are
not equal, and the curve fluctuates around the straight line Ptr/Pin ¼ 1/2. However, the sum of the transmitted
power flows along both sides of the driving point is equal to the input power flow. It also can be seen that the
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Fig. 5. Transmitted power flow ratio curves of cracked beam. (a) a/D ¼ 0.3, (b) c/D ¼ 10.

Fig. 4. Input power flow level of cracked beam. (a) f ¼ 100Hz, (b) a/D ¼ 0.3.
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Fig. 6. Transmitted power flow ratio curves of cracked beam (f ¼ 100Hz).

X. Zhu et al. / Journal of Sound and Vibration 297 (2006) 215–226 223
characteristics of the transmitted power flow ratio curves are similar to those of the input power flow curves
when increasing c/D and a/D, respectively. When c ¼ 0, Ptr/Pin ¼ 0.5, which implies that the transmitted
power flows along both directions are equal when the acting point locates at the crack point, like the case of
perfect beam. Fig. 6 shows the ratio of transmitted power flow versus the relative crack location. The curves
are all sinusoidal. The wavelengths of the curves are almost identical for different relative crack depth, but the
amplitude increases with increasing crack depth.

From Figs. 3 and 5, it can be found that the changes of input power flow and transmitted power flow ratio
of cracked beam versus those of perfect beam are more evident when the driving frequency is higher. That is to
say, the power flow characteristics in the beam are more sensitive to crack’s parameters at higher frequencies.
Thus the acquirement of the power flow at high frequencies will be more effective. However, it is obvious that
the omission of shear deformation and rotating inertia results in a large bias error at high frequencies when
calculating the flexural power flow in one-dimensional structures [17]. Consequently, it is necessary to adopt
Timoshenko beam theory to calculate the flexural power flow at high frequencies.

In Fig. 7, the cracked beam’s input power flow levels calculated by both Euler beam theory and Timoshenko
beam theory are plotted, the perfect beam’s input power flow levels by using two theories being drawn likewise
to compare with the cracked beam’s results. From the figure it is clear that the cracked beam’s input power
flow level from Euler beam theory fluctuates around that of perfect beam from the same theory. The same
results about cracked Euler beam can also be found in Ref. [9]. For both the perfect beam and cracked beam,
the input power flow obtained from Euler beam theory are coincident with that from Timoshenko beam
theory when the driving frequency is much smaller than the critical frequency, but the deviation between the
two theories becomes very obvious with increasing driving frequency. For the cracked beam, it can be seen
that the difference of the power flow levels between the two theories is bigger than 6 dB when f/fc ¼ 0.4.
Therefore, for the accurate analysis of the cracked beam power flow characteristics at high frequencies, the
consideration of Timoshenko beam theory in this paper is necessary and valuable.

When considering the structural damping, the complex elastic modulus E0 may be introduced, where
E0 ¼ E(1+iZ), Z is the damping loss factor. By substituting E0 into the above equations of wave motion, the
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Fig. 7. Input power flow level of perfect beam and cracked beam using two theories.
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solutions can be deduced as well. The numerical results indicate the relations between the power flow
characteristics of the Timoshenko beam and the information of the crack (location and depth) are similar to
those of undamped beam.

Based on above analysis, it can be found that the existence of the crack causes the change of flexural wave
motion in the Timoshenko beam, and the numerical results demonstrate that vibrational power flow
characteristics of the Timoshenko beam are close related to both the location and depth of the crack. Define
the ratio of cracked Timoshenko beam’s input power flow to uncracked beam’s input power flow is the
normalized input power flow. The contour lines of the normalized input power flow could be plotted in a
figure from different combination of normalized crack location and depth under some specified frequencies via
the analytical solutions above, the figure having the normalized crack location and depth as its axes. Fig. 8
shows the contours of normalized input power flow of cracked Timoshenko beam when driving frequency is
1000Hz. In order to be clear and readable, only part of the contours are plotted and labeled. The 0.88 contour
means the points on the curve have 88% input power compared to the uncracked beam. The location and
depth corresponding to any point on the curve would become the possible crack location and depth. The
contour lines from two different driving frequencies can be plotted together, and the intersection point would
indicate the location and depth of the crack. When more than one intersection point is obtained from the
merged figure, the contour from another driving frequency could be used to uniquely obtain the correct point,
which would indicate the crack location and depth.

For example, assume that certain crack exists in the Timoshenko beam. The normalized input power flow of
the cracked beam is 0.925 when the driving frequency is 1000Hz and is 0.938 with frequency of 800Hz. Thus
the solid contour with the value of 0.925 under 1000Hz can be plotted in Fig. 9. The dash contour with the
value of 0.938 under 800Hz is plotted in the same figure. It can be seen that there are two intersection points
for these two contours. So the dot contour with the value of 0.963 under 1200Hz can be used to uniquely
obtain the final point, as can be seen from Fig. 9. The final point indicates that the relative depth is 0.3 and the
relative position 8 in this case. Therefore, according to the contour diagram of different frequencies, the
crack’s position and depth of Timoshenko beam may be detected. Besides the input power flow, the contour
lines of transmitted power flow can also be constructed to identify the crack.
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Fig. 8. Contours of normalized input power flow with driving frequency of 1000Hz.

Fig. 9. Crack identification by normalized input power flow contours from three different driving frequency.
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6. Conclusion

This paper presented an approach to analyze the vibrational power flow characteristics of cracked
Timoshenko beam structures. The case of an infinite Timoshenko beam with an open crack is considered. The
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wave motion and vibrational power flow characteristics under point driving force are researched. Changes in
input and transmitted power flows with respect to the crack location and crack ratio are obtained. The results
show that the vibrational power flow characteristics of cracked Timoshenko beam are extraordinary related to
the crack location and crack depth, especially at high frequencies. Contour lines of input power flow under
different frequencies are constructed to identify the crack position and depth.

The research in this paper provides guidance to crack detection by measuring the vibrational power flow of
cracked Timoshenko beam. It should be pointed out that the power flow characteristics are not very sensitive
to small cracks (a/Do0.1), so the method lacks accuracy for some small cracks. The application of the method
may suit the moderate cracks. As a global crack detection method, it is believed that this method provides a
simple and useful tool to detect a crack without the access of the whole Timoshenko beam structure. Further
work will be done to investigate the cracked finite Timoshenko beam’s power flow characteristics and diagnose
the crack based on the power flow analysis presented in this paper.
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